Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N,N'-bis(tert-butoxycarbonyl)cystamine

Michael Bolte^a* and Peyman Sakhaii^b

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.046 wR factor = 0.093Data-to-parameter ratio = 20.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, Di-Boc-cystamine, $C_{14}H_{28}N_2O_4S_2$, serves as a building block for the synthesis of peptides. The molecule is located on a twofold rotation axis running through the centre of the S-S bond. The crystal packing is stabilized by $N-H\cdots O$ hydrogen bonds.

Received 24 August 2004 Accepted 31 August 2004 Online 4 September 2004

Comment

The title compound, (I), serves as a building block for the synthesis of thioethyl-modified peptides (Moree *et al.*, 1993). The molecule (Fig. 1) possesses C_2 symmetry, with a twofold rotation axis running through the centre of the S—S bond. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; MOGUL Version 1.0; Allen, 2002). The crystal packing (Fig. 2) shows a ladder-like structure in which adjacent molecules are held together by $N-H\cdots O$ hydrogen bonds.

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Experimental

The title compound, (I), was synthesized according to the procedure described by Moree *et al.* (1993). Colourless crystals were grown form an ethanol solution.

Crystal data

 $C_{14}H_{28}N_2O_4S_2$ $D_x = 1.248 \text{ Mg m}^{-3}$ $M_r = 352.50$ Mo $K\alpha$ radiation Monoclinic, C2/cCell parameters from 510 a = 19.674 (2) Å reflections b = 9.6968 (8) Å $\theta = 3.1 - 19.7^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ c = 9.8462 (9) Å $\beta = 92.589 (5)^{\circ}$ T = 173 (2) K $V = 1876.5 (3) \text{ Å}^3$ Needle, colourless Z = 4 $0.45 \times 0.06 \times 0.04 \text{ mm}$

Data collection

Siemens SMART CCD three-circle diffractometer 1271 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.067$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -26 \rightarrow 24$ $T_{\rm min} = 0.877, T_{\rm max} = 0.988$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 12$

DOI: 10.1107/S1600536804021348

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0327P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.093$ S = 1.02 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.21$ e Å $^{-3}$ $\Delta\rho_{\rm min} = -0.27$ e Å $^{-3}$

Table 1 Selected geometric parameters (\mathring{A}, \circ) .

S1-C2	1.809(2)	C5-O51	1.220(2)
$S1-S1^{i}$	2.0448 (11)	C5-O6	1.348 (2)
C3-N4	1.449 (3)	O6-C7	1.475 (2)
N4-C5	1.343 (3)		
C2-S1-S1i	103.12 (7)	O51-C5-O6	125.6 (2)
C3-C2-S1	114.38 (15)	N4-C5-O6	110.54 (18)
C5 - N4 - C3	120.93 (19)	C5-O6-C7	120.56 (16)
O51-C5-N4	123.9 (2)		
$C2^{i} - S1^{i} - S1 - C2$	65.13 (16)		

Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

Table 2 Hydrogen-bonding geometry (Å, °).

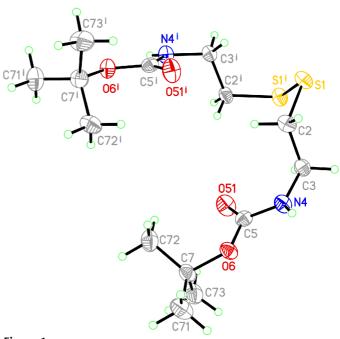
D $ H···A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N4—H4···O51 ⁱⁱ	0.79 (2)	2.14 (2)	2.866 (2)	152 (2)

Symmetry codes: (ii) x, 1 - y, $\frac{1}{2} + z$.

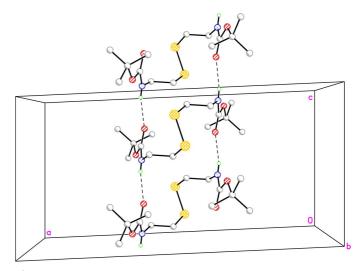
H atoms bonded to C atoms were refined with fixed individual displacement parameters $[U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C}_{\rm methylene})]$ or $1.5U_{\rm eq}({\rm C}_{\rm methyl})$, using a riding model, with C–H = 0.99 and 0.98 Å, for methylene and methyl H atoms, respectively. The H atom bonded to nitrogen was refined isotropically.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2003).

References


Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Moree, W. J., van Gent, L. C., van der Marel, G. A. & Liskamp, R. M. J. (1993). *Tetrahedron*, **49**, 1133–1150.


Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Figure 1Perspective view of (I), with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (i) as in Table 1

Figure 2 Packing diagram of (I), viewed on the *ac* plane. Hydrogen bonds are shown as dashed lines.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.